Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Heart Lung Transplant ; 41(4): 438-441, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35042640

RESUMO

Finding reliable parameters to identify patients with heart failure (HF) that will respond to cardiac resynchronization therapy (CRT) represents a major challenge. We and others have observed post-translational modifications of Ryanodine Receptor (RyR) in several tissues (including skeletal muscle and circulating lymphocytes) of patients with advanced HF. We designed a prospective study to test the hypothesis that RyR1 glycation in circulating lymphocytes could predict CRT responsiveness in patients with non-ischemic HF. We enrolled 94 patients who underwent CRT and 30 individuals without HF, examining RyR1 glycation in peripheral lymphocytes at enrollment and after 1 year. We found that baseline RyR1 glycation independently predicts CRT response at 1 year after adjusting for age, diabetes, QRS duration and morphology, echocardiographic dyssynchrony, and hypertension. Moreover, RyR1 glycation in circulating lymphocytes significantly correlated with pathologic intracellular calcium leak. Taken together, our data show for the first time that RyR1 glycation in circulating lymphocytes represents a novel biomarker to predict CRT responsiveness.


Assuntos
Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca , Canal de Liberação de Cálcio do Receptor de Rianodina , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/terapia , Humanos , Linfócitos/metabolismo , Estudos Prospectivos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Resultado do Tratamento
3.
J Clin Invest ; 125(5): 1968-78, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25844899

RESUMO

The type 2 ryanodine receptor (RyR2) is a Ca2+ release channel on the endoplasmic reticulum (ER) of several types of cells, including cardiomyocytes and pancreatic ß cells. In cardiomyocytes, RyR2-dependent Ca2+ release is critical for excitation-contraction coupling; however, a functional role for RyR2 in ß cell insulin secretion and diabetes mellitus remains controversial. Here, we took advantage of rare RyR2 mutations that were identified in patients with a genetic form of exercise-induced sudden death (catecholaminergic polymorphic ventricular tachycardia [CPVT]). As these mutations result in a "leaky" RyR2 channel, we exploited them to assess RyR2 channel function in ß cell dynamics. We discovered that CPVT patients with mutant leaky RyR2 present with glucose intolerance, which was heretofore unappreciated. In mice, transgenic expression of CPVT-associated RyR2 resulted in impaired glucose homeostasis, and an in-depth evaluation of pancreatic islets and ß cells from these animals revealed intracellular Ca2+ leak via oxidized and nitrosylated RyR2 channels, activated ER stress response, mitochondrial dysfunction, and decreased fuel-stimulated insulin release. Additionally, we verified the effects of the pharmacological inhibition of intracellular Ca2+ leak in CPVT-associated RyR2-expressing mice, in human islets from diabetic patients, and in an established murine model of type 2 diabetes mellitus. Taken together, our data indicate that RyR2 channels play a crucial role in the regulation of insulin secretion and glucose homeostasis.


Assuntos
Cálcio/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Glucose/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Taquicardia Ventricular/genética , Adulto , Substituição de Aminoácidos , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Glucagon/metabolismo , Intolerância à Glucose/genética , Homeostase , Humanos , Secreção de Insulina , Transporte de Íons , Masculino , Camundongos Obesos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mutação de Sentido Incorreto , Nitrosação , Oxirredução , Mutação Puntual , Canal de Liberação de Cálcio do Receptor de Rianodina , Taquicardia Ventricular/metabolismo , Adulto Jovem
5.
Int J Cardiol ; 141(2): e34-6, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-19136171

RESUMO

We observed a patient with syncope, who implanted a pacemaker with advanced algorithms such as "atrial-tachy response" and "dynamic atrio-ventricular delay". After one year, conventional ECG Holter showed pacemaker malfunction, wrongly attributed to exposure to electromagnetic field. In fact, telemetry revealed an inappropriate programming and solved our case. Holter monitoring is commonly performed in the evaluation of pacemaker malfunction, albeit it remains a quite shallow diagnostic method especially to detect electromagnetic interferences. New algorithms seem important, but it is reasonable to obtain more suitable analytical tools, too.


Assuntos
Algoritmos , Eletrocardiografia Ambulatorial , Marca-Passo Artificial , Idoso , Feminino , Humanos , Telemetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...